
Robust  Stereo  Ego-motion for Long Distance  Navigation 
Clark F. Olson,  Larry H. Matthies,  Marcel  Schoppers,  and Mark W. Maimone 

Jet Propulsion  Laboratory,  California Institute of Technology 
4800 Oak Grove  Drive, Pasadena CA 91109-8099 

Abstract 

Several  methods  for  computing  observer  motion  from 
monocular  and  stereo  image sequences have been proposed. 
However,  accurate  positioning  over long distances requires 
a higher level of robustness  than  previously achieved. This 
paper describes  several mechanisms  for  improving robust- 
ness in the  context of a maximum-likelihood stereo ego- 
motion  method. W e  demonstrate  that  even a  robust sys- 
t e m  will  accumulate  super-linear  error in the  distance  trav- 
eled due  to  increasing  orientation  errors.  However,  when 
an absolute orientation  sensor is incorporated,  the error 
growth  is reduced to  linear in the  distance traveled,  and 
grows much  more  slowly in practice.  Our  experiments, in- 
cluding a trial  with 210 stereo pairs,  indicate  that  these 
techniques  can  achieve  errors below 1 % of the  distance  trav- 
eled. This  method  has been implemented  to run on-board a 
prototype  Mars  rover. 

f Introduction 
The  computation of camera motion  from an image se- 

quence  (called  ego-motion)  is a promising  technique  for 
improving the position estimation capability of a mobile 
robot, since errors in robot  odometry often grow  quickly. 
Several methods for the computation of ego-motion  have 
been  proposed  using  monocular  sequences [l, 3, 4, 91 and 
stereo sequences [5, 6 ,  7, 10, 111. However,  in  order  for 
these techniques to be  effective in long-distance  navigation 
of a  robot,  the  techniques  must  be highly robust to prob- 
lems  such as poor odometry, inaccurate feature matching, 
and outliers. 

Our aim in this work is to develop a  method that is 
capable of accurate navigation  over  long distances using 
incremental stereo ego-motion. The use of stereo informa- 
tion in this  method  has been  crucial  in both outlier rejec- 
tion and reducing random errors that occur due to feature 
localization and drift in  each  frame. We use a maximum- 
likelihood formulation of motion estimation that models 
error in the landmark positions  more accurately than a 
least-squares formulation, and  thus yields  more accurate 
results. Robustness issues are further addressed through 
optimized feature selection,  improved  motion  prediction, 
and multiple outlier rejection  mechanisms. We  show that 
reuse of landmarks between  frames  significantly  improves 
the overall  accuracy  since the errors at successive  estima- 
tion steps become  negatively correlated. 

For long-range navigation, it is important to consider 
the  rate of error growth as the robot travels.  Even a  robust 
system will accumulate errors that grow super-linearly 
with the distance traveled owing to increasing orientation 
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errors. However, the incorporation of an absolute orien- 
tation sensor,  such as a compass or sun sensor, greatly 
improves the long-range  performance,  reducing the accu- 
mulated error to a linear function of the distance traveled. 

We demonstrate the robustness of these techniques in 
rocky terrain containing many  occlusion  boundaries. The 
long-range  performance  is evaluated  under controlled  con- 
ditions using simulations and real data. 

2 Motion  estimation 
Our motion estimation  method is  based upon the 

maximum-likelihood  ego-motion formulation of Matthies 
[7, 81. This  method  determines the observer motion be- 
tween  two (or more) pairs of stereo images captured by 
calibrated cameras. The basic  elements of the method are 
as follows. 
Feature  selection: The first step is to select landmarks 
for  which the 3D position can be  precisely  measured  in 
successive stereo pairs. The initial landmarks are selected 
by  finding  easily trackable features in the left  image of the 
first stereo pair. 
Stereo  matching (1): An estimate of the 3D position of 
the  landmarks is obtained by performing stereo matching 
in the initial stereo pair. The  procedure uses a correlation- 
based  search to locate the corresponding point for each of 
the selected landmarks.  Triangulation using the known 
relative  position  between the cameras is then used to de- 
termine the position of the landmark  with respect to  the 
camera  frame. This  step also  provides a covariance matrix 
that models the error  in the position estimate. 
Feature  tracking: Landmarks are located in  subse- 
quent stereo pairs using a correlation-based search for the 
selected features in the left  image, that is similar to stereo 
matching. Prior knowledge of the  approximate  robot mo- 
tion is used to select the search  space  for the feature track- 
ing. 
Stereo  matching (2): A second stereo matching step is 
performed to estimate the 3D positions of the landmarks 
with  respect to the new camera frame. As in the previous 
steps, this uses a correlation-based  search and triangula- 
tion is performed to estimate the position. 
Motion  estimation: Motion estimation is  performed 
using  Gaussian  error distributions for the landmark posi- 
tions, which  yields better  robustness than weighted least- 
squares  minimization  [7]. The maximum-likelihood  esti- 
mation problem  requires an iterative solution. However, 
convergence  is  fast and requires  negligible computation 
time compared to  the previous steps. 
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Figure 1: Steps  performed for motion  estimation. 

These steps are performed  for  each pair of consecutive 
stereo frames, retaining the same set of landmarks,  but 
replenishing those that were not  found or discarded. The 
overall  motion estimate is determined as the combination 
of motions  from  each pair of frames.  Figure 1 shows the 
steps in the process to estimate the motion  between  two 
frames. 

3 Maximum-likelihood  ego-motion 
Given the noisy landmark positions  from stereo data, 

we use a maximum-likelihood  formulation  for  motion  esti- 
mation. An early  version of this  method was  given  in [7]. 
Further details can  be found  in [8]. 

Let Lb and La be 3 x n matrices of the observed  land- 
mark positions  before and after a  robot motion. For  each 
landmark we have: 

L: = RLP+T+e;,  (1) 

where R and T are the rotation and translation of the robot 
and e combines the errors in the observed  positions of the 
landmarks at  both locations.  Assume,  for the moment, 
that  the pre-move landmark positions are errorless and  the 
post-move landmark positions are corrupted by Gaussian 
noise. In  this case, the joint conditional probability density 
of the observed  post-move landmark positions,  given R and 
T ,  is  Gaussian: 

where r; = L4 - RL! - T and Wi is the inverse  covariance 
matrix of e;. The maximum-likelihood estimate for R and 
T is  given  by  minimizing the exponent x:=, rTW;r;. Note 
that  this reduces to  the least-squares  solution if  we let 
wi = WiI.  

Solving  for the maximum-likelihood motion  estimate is 
a nonlinear  minimization  problem,  which we solve through 
linearization and iteration. We linearize the problem by 
taking the first-order  expansion with respect to  the rota- 
tion angles.  Let 00 be the initial angle estimates  and & 
be  the corresponding rotation matrix. The first-order ex- 
pansion  is: 

L: M &L! + J ~ ( O  - eo) + T + e;,  (3) 

where J; is the Jacobian for the  ith landmark and e; is a 
Gaussian  noise  vector with covariance C; = CY +&E!%. 

We can now determine  a maximum-likelihood estimate 
for 0 andTusing ri = Lq-&L;-J;(O-Oo)-T and W; = 
(Cq + &C!hT)-l .  Differentiating the objective function 
with respect to 0 and T and setting the derivatives to zero 
yields: 

where Hi = [J; I ]  and Li = L4 - &L! + JiOo. 
After  solving (4), the new motion estimate is  used as 

an initial estimate for the next  step and  the process  is it- 
erated until convergence. Further details, and  a  technique 
to estimate only 0 without T ,  so that estimation of T can 
be  removed  from the iteration, can  be  found in [8]. 

4 Long-range  error  growth 
In order to test the long-range  performance of the ego- 

motion  techniques  under  controlled conditions, we have 
built a  simulator that generates random  landmark posi- 
tions for motion estimation. The  simulator initially selects 
random image  locations as the features in the left  image 
of the first  (pre-move) stereo pair. The positions are back- 
projected into 3D landmarks using a  random (uniformly 
distributed) height and  then reprojected into  the right im- 
age  with  Gaussian  noise (a = 0.3  pixels). The same land- 
marks are projected into a  subsequent (post-move) stereo 
pair after moving the camera models to a new position, 
simulating  robot motion. Feature tracking error is  mod- 
eled with Gaussian  noise (a = 0.5 pixels).  After this  drift, 
the landmarks are again backprojected into 3D and repro- 
jected into the right  image of the post-move stereo pair 
with noise. The motion estimate is then  computed be- 
tween the robot locations. Further moves are simulated 
using the landmark positions incorporating the landmark 
drift. 

Figure 2 shows the error growth  in the robot position 
for  motions of 0.5 m between stereo pairs for a  camera 
pair with a 45' field-of-view and 512 x 480 pixels. It can 
be observed that  the growth  in the error is greater than 
linear  in the distance traveled. The  explanation for this is 
that  the expected error in the orientation parameters grows 
approximately proportional to the  square root of the dis- 
tance traveled  (since the overall  variance is the sum of the 
individual variances). The overall  position error grows as 
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Figure 2: Expected  position  error as a function of distance  trav- 
eled. 

the sum of two terms. First, the individual position er- 
rors contribute a term  that is expected to grow with the 
square root of the distance traveled. Second, the accu- 
mulating orientation errors contribute a term that grows 
as the integral of the orientation error. We thus expect a 
super-linear contribution from this  term, which  grows as 
O(d%),  where d is the distance traveled. The contribu- 
tion from the orientation error thus dominates the overall 
position error. 

In order to eliminate the super-linear error growth, we 
have examined the use of an absolute orientation sensor to 
provide periodic updates to  the orientation estimate. For 
example, accelerometers can be  used to provide  roll and 
pitch information, while a compass, sun sensor, or even a 
panoramic camera could  be  used to determine the robot 
yaw.  We have simulated such  sensors as providing  periodic 
orientation updates with Gaussian noise  having  zero  mean 
and 1' standard deviation. Figure 2 shows that this results 
in linear error growth in the distance traveled when the 
orientation updates  are used and,  in general, the growth 
is much slower than when  only the ego-motion estimates 
are used. In  this experiment, the simulations indicate that 
error less than 1% of the distance traveled is achievable 
with the error variances described above. 

Our conclusion is that  an absolute orientation sensor 
is critical for navigation over long distances, unless  some 
other means is used to periodically update  the robot po- 
sition. If no orientation sensor is used, the robot may 
navigate safely  over short distances. However,  over  long 
distances the increasing orientation errors will build until 
the position estimate is useless. 

5 Robust estimation 
In order to achieve accurate navigation over  long  dis- 

tances, errors in the landmark position estimation and 
matching process must have a very small effect  on  each 
computed motion estimate. Landmarks must be  chosen 
such that they are easy to track  and yield little stereo er- 
ror. Tkacking must be performed  such that mismatches are 
rare. When mismatches occur, there must be mechanisms 
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Figure 3: Comparison of the effect of variation  in  stereo corre 
lation  error  versus  tracking  correlation  error. 

for detecting and discarding them. We describe techniques 
for  performing these steps here, while managing the over- 
all error buildup over time and dealing with camera roll as 
the robot moves. 

5.1 Optimized feature selection 
Intuitively, one  would expect for errors in stereo match- 

ing to produce larger errors in the motion estimate than 
errors in the landmark tracking. (Here we refer to  the 
subpixel  localization errors rather than mismatches.) The 
reason  for this is that stereo error produces a larger effect 
in the estimation of each landmark position than error in 
feature tracking. 

Our simulations have  verified this effect. Figure 3 shows 
the variation in the motion error over  long distances as the 
stereo and feature tracking errors vary.  For  each plot, the 
error standard deviation for  one of the matching steps was 
held constant at 0.3 pixels,  while the other was varied. 
It can be observed that  the navigation error varies  much 
faster as the stereo error is changed than as the tracking 
error is changed. 

While it is important to minimize both  the stereo error 
and the tracking error, we conclude that navigation error 
is improved by performing landmark selection such that 
the localization  precision  along the z-axis has more  weight 
than localization  precision  along the y-axis,  since error in 
the y-direction has a lesser  effect  on the stereo error. 

This has been implemented using a variation of the 
Forstner interest operator [2]. A feature is selected if the 
covariance  ellipse of the feature localization is not highly 
elliptical, the precision of the feature localization is strong 
(with higher  weighting on the horizontal precision), and 
there is no better feature within some bounded distance. 

5.2 Improved feature tracking 
In many environments, it is  common  for the landmarks 

that are selected to look somewhat similar to each other 
and other image  locations. If a large search space is neces- 
sary for  each feature, incorrect matches occur frequently, 
since the difference in the appearance of the landmarks af- 
ter  the camera motion  may be greater than  the difference 
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Figure 4: One  cycle  of  robust feature  matching. (a) Landmarks  selected. (b) Landmarks  matched  in  right  image.  (c)  Predicted 
positions  in  next  image. (d) Matched  positions in left  image. (e) Matched  positions in right image. (f) Landmarks  after  replenishment. 

in appearance between the landmark and other image lo- 
cations. For this reason, it is important to limit the search 
space over  which we search for landmarks. Of course, we 
cannot limit the search space to be so small that  it does 
not contain the correct match. 

An a priori estimate of each landmark position is ob- 
tained using the robot odometry estimate. However, errors 
in the odometry incur the need  for a large search window. 
In order to decrease the size of this search  window, we  es- 
timate  the robot pitch and yaw errors by &st detecting a 
landmark near the  top of the image (and thus relatively 
far away)  using a large template window. In  this case, we 
use a large search window, but since the landmark is also 
large, we are able to avoid mismatches in the image.  After 
correcting the robot pitch and yaw estimates such that  the 
initial landmark match is correct, we can reduce the search 
windows  for the later correlation steps, thereby reducing 
the chance of a false  positive. 

Within the reduced search windows, our experiments 
have indicated that correlation using a two-resolution 
pyramid with decimation by a factor of four  provides the 
best combination of speed and tracking performance. 

5.3 Outlier  rejection 

We use  several methods to reject outliers in the motion 
estimation process. Initially, matches in both the stereo 
matching and  feature tracking steps  are eliminated if the 
correlation score is too low. This helps to filter out cases 
where a landmark is not present in the new image and cases 
where the change in appearance is so large that correct 
matching is not possible. 

For  each stereo match, the rays from the cameras 
through the image features are computed to determine if 

they consistent. The consistency is measured by the dis- 
tance between the rays at the location of smallest separa- 
tion. (If there was no error, the rays would intersect.) If 
this gap is not in front of the cameras, or if the projection 
of the  gap  into the image is larger than a pixel or two, the 
match can be rejected, since it is not geometrically  feasible. 

After all of the matches have  been found and tracked in 
both stereo pairs, a rigidity test is applied to prevent gross 
errors.  Here, we use a constraint that  the landmarks must 
be stationary. If a landmark moves  between stereo frames, 
the landmark is not useful  for determining the robot mo- 
tion. This test repeatedly rejects the landmark that ap- 
pears to have moved the most, by examining the painvise 
distances between the landmarks before and after the robot 
motion. Landmarks are rejected until all remaining devi- 
ations are small  enough to be considered  noise. 

Finally, outlier rejection is performed within the 
maximum-likelihood motion estimation procedure. After 
computing a motion estimate, the residual error for  each 
landmark is determined. Once again, the worst matching 
landmarks are rejected if they have a residual greater than 
some threshold and the estimation is repeated. 

5.4 Multi-frame  tracking 
Matthies [8] has  shown that  the errors between  succes- 

sive motions are negatively correlated if the same land- 
marks are tracked through the images. We thus expect to 
have lower error when the same landmarks are tracked, 
rather  than selecting new landmarks at each step. Of 
course,  some landmarks must be replenished at each step, 
since  some will  move out of the field-of-view and some will 
be rejected as outliers. However, this effect is significant, 
even  when there is  only partial overlap  between the land- 
mark sets. In our experiments, we have  achieved a 27.7% 
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Figure 5: Several  cycles of robust  feature  matching  for  ego-motion.  The  squares  indicate the tracked  landmarks and the lines show 
the motion of the landmark  from the previous  frame. 

reduction in navigation error when multi-frame tracking 
is used, rather  than considering  each  pair of frames sepa- 
rately. This effect is thus useful in maintaining accurate 
navigation over  long distances. 

5.5 Camera roll 
Camera roll due to traversing rough terrain is a sig- 

nificant problem for robots that operate outdoors. While 
pitch and yaw are reasonably approximated by translation 
of the features in the image,  roll  causes the features to 
be  rotated  and makes tracking significantly  more  difficult. 
Our experiments indicate that correlation scores degrade 
approximately linearly with the camera roll. In most ter- 
rains, camera roll of less than 10' can be tolerated without 
difficulty to  the feature tracking. 

Clearly, a robust motion estimation system for outdoor 
navigation must consider the effects of camera roll. The 
simplest solution to this problem is to ensure that image 
pairs are  captured frequently enough that  the robot does 
not roll by more than 10' between  frames.  For many sys- 
tems, this solution is adequate. An alternative, for  cases 
where large amounts of camera roll are possible,  is the use 
of an orientation sensor, such as a gyro or accelerometer. 
If the approximate roll of the camera is known, then the 
correlation window  for  each landmark can be  rotated to 
the appropriate orientation for tracking. 

6 Results 
These techniques have  been tested on hundreds of stereo 

pairs, including outdoor terrain, with the robot undergo- 
ing six degree-of-freedom motion. Figure 4 shows  one  com- 
plete cycle of the motion estimation process  for a simple 
example of forward motion. First, landmarks were selected 

automatically in the left  image of the initial stereo pair. 
The matching locations were then detected in the corre- 
sponding right image. A small number of landmarks were 
discarded at this  step  due to a poor correlation score or a 
significant  gap  between the rays from the cameras. Next, 
the locations of the landmarks were predicted in the next 
image of the sequence. 

After correcting for pitch and yaw error, the actual lo- 
cations of the landmarks were detected in the left and right 
images of this image.  Several landmarks were eliminated 
at this stage using the rigidity constraint. The remaining 
landmarks were  used to determine the motion of the robot. 
Finally, the landmark set was reduced by eliminating those 
features that were expected to move out of the field-of-view 
in the next step and replenished with new landmarks. 

Figure 5 shows landmark tracking for six consecutive 
frames of forward  motion in rocky terrain. (Figure 4 cor- 
responds to  the third  step in this sequence.) Despite errors 
in the nominal camera movements and features occurring 
on occluding boundaries that are difficult to track, it can 
be  observed that  the final tracking is highly robust, with 
no outliers in the tracking process.  For this  data  set,  the 
overall error was 1.3% of the distance traveled. 

In order to test the performance of these techniques on 
extended sequences, we have applied them to imagery from 
a rover traverse consisting of 210 stereo pairs. This traverse 
was performed with a small rover and a wide  field-of-view, 
so the cameras were  close to  the ground and  there was 
considerable distortion in the appearance of close-range  lo- 
cations. Figure 6 shows an example of consecutive stereo 
pairs with 320 x 240 resolution. The rover traversed ap- 
proximately 20 meters, taking images about every 10 cen- 
timeters. For cameras with a higher  viewpoint and nar- 
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Figure 6: Stereo  pairs  from  rover  traverse  sequence. 

rower  field-of-view, the techniques  could be executed less 
frequently.  However,  for this rover,  small  motions  between 
stereo pairs are necessary to track the foreground  land- 
marks.  Figure 7 shows the results for this traverse. It can 
be observed that  the ego-motion track closely  follows the 
ground-truth from GPS, while the odometry estimate di- 
verges  from the  true position. The error in this  run was 
approximately 1.2%. 

7 Summary 
We have examined techniques to perform stereo ego- 

motion robustly for  long-distance robot navigation. Tech- 
niques  for  performing robust feature selection and tracking 
with outlier rejection  have  been  developed in order to en- 
sure accurate motion estimation at each step. An  impor- 
tant result of our investigation is that  an absolute orien- 
tation sensor is necessary to perform accurate navigation 
over  long distances, since estimation based  on  ego-motion 
alone has error that grows  super-linearly with the distance 
traveled. The use of an orientation sensor  reduces the er- 
ror growth to linear in  the distance traveled and results in 
a  much lower error in practice. The use of stereo data was 
also critical to elimination of outliers and accurate motion 
estimation. We believe that  this combination of techniques 
results in a method with greater robustness than previous 
techniques and  that is capable of accurate motion  estima- 
tion for  long-distance  navigation. 
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